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Abstract

The biggest limitation of probabilistic graph-
ical models is the complexity of inference,
which is often intractable. An appealing
alternative is to use tractable probabilistic
models, such as arithmetic circuits (ACs)
and sum-product networks (SPNs), in which
marginal and conditional queries can be an-
swered efficiently. In this paper, we present
the first discriminative structure learning al-
gorithm for ACs, DACLearn (Discriminative
AC Learner). Like previous work on gen-
erative structure learning, DACLearn finds
a log-linear model with conjunctive features,
using the size of an equivalent AC representa-
tion as a learning bias. Unlike previous work,
DACLearn optimizes conditional likelihood,
resulting in a more accurate conditional dis-
tribution. DACLearn also learns much more
compact ACs than generative methods, since
it does not need to represent a consistent
distribution over the evidence variables. To
ensure efficiency, DACLearn uses novel ini-
tialization and search heuristics to drasti-
cally reduce the number of feature evalua-
tions required to learn an accurate model.
In experiments on 20 benchmark domains,
we find that our DACLearn learns models
that are more accurate and compact than
other tractable generative and discriminative
methods.

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

1 Introduction

Probabilistic graphical models such as Bayesian net-
works, Markov networks, and conditional random
fields are widely used for knowledge representation
and reasoning in computational biology, social net-
work analysis, information extraction, and many other
fields. However, the problem of inference limits their
effectiveness and broader applicability: in many real-
world problems, exact inference is intractable and ap-
proximate inference can be unreliable and inaccurate.
This poses difficulties for parameter and structure
learning as well, since most learning methods rely on
inference.

A compelling alternative is to work with model classes
where inference is efficient, such as bounded treewidth
models [1, 4], mixtures of tractable models [16, 19],
sum-product networks (SPNs) [18, 8, 20], and arith-
metic circuits (ACs) [5, 12, 13]. Previous work has
demonstrated that these models can be learned from
data and that they often meet or exceed the accuracy
of intractable models. However, most of this work has
focused on joint probability distributions over all vari-
ables. For discriminative tasks, the conditional dis-
tribution of query variables given evidence, P (Y|X ),
is usually more accurate and more compact than the
joint distribution P (Y,X ).

To the best of our knowledge, only a few algorithms ad-
dress general tractable discriminative structure learn-
ing. These include learning tree conditional ran-
dom fields (tree CRFs) [2], learning junction trees us-
ing graph cuts [22], max-margin tree predictors [17]
and mixtures of conditional tree Bayesian networks
(MCTBN) [10]. The first three methods are limited to
pairwise potentials over the query variables. MCTBN
learns a mixture of trees, which is slightly more flexible
but still performed poorly in our experiments.

In this paper, we present DACLearn (Discriminative
AC Learner), a flexible and powerful method for learn-
ing tractable discriminative models over discrete do-
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mains. DACLearn is built on ACs, a particularly flexi-
ble model class that is equivalent to SPNs [20] and sub-
sumes many other tractable model classes. DACLearn
performs a search through the combinatorial space of
conjunctive features, greedily selecting features that
increase conditional likelihood. In order to keep the
model compact, DACLearn uses the size of the AC as
a learning bias. Since DACLearn is modeling a condi-
tional distribution, its ACs can condition on arbitrary
evidence variables without substantially increasing the
size of the circuit, leading to much more compact
models. DACLearn is similar to previous AC learn-
ing methods [12, 21], but it discriminatively learns a
conditional distribution instead of a full joint distri-
bution. DACLearn also introduces new initialization
and search heuristics that improve the performance of
existing generative AC learning algorithms.

In experiments on 20 benchmark datasets, we find that
DACLearn is better at learning conditional distribu-
tions than several generative and discriminative base-
lines. We also find that its running time is similar to or
better than other methods, in spite of the additional
complexity of optimizing conditional likelihood.

2 Conditional Random Fields

Consider sets of discrete variables Y =
{Y1, Y2, · · · , Yn} and X = {X1, X2, · · · , Xm}.
Conditional random fields1 (CRFs) [11] are undi-
rected graphical models that represent the conditional
probability distribution of query variables Y given the
evidence variables X :

P (Y|X ) =
1

Z(X )

∏

c

φc(Dc), (1)

where each φc is a real-valued, non-negative function,
known as a potential function, with scope Dc ⊂ X ∪Y.
Z(X ) is a normalization function, also called the par-
tition function, which only depends on evidence vari-
ables X . A Markov network can be seen as a spe-
cial case of a CRF with no evidence variables, so X is
empty and the partition function Z is a constant.

If all potential functions of Relation 1 are positive,
then we can represent the conditional probability dis-
tribution using an equivalent log-linear formulation:

logP (Y|X ) =
∑

i

wifi(Di)− logZ(X ), (2)

where fi is a logical conjunction of variable states. For
example, for three binary variables X1, Y1, and Y2, we
can define f1(Y1, X1) = x1 ∧ ¬y1 and f1(Y1, Y2) =
y1 ∧ y2.

1Also known as conditional Markov networks.

3 Arithmetic Circuits

Inference in probabilistic graphical models such as
CRFs is typically intractable. An appealing alterna-
tive is tractable probabilistic models, which can effi-
ciently answer any marginal or conditional probability
query. Our focus is on arithmetic circuits (ACs) [5],
a particularly flexible tractable representation. An
arithmetic circuit (AC) [5] is a tractable probabilistic
model over a set of discrete random variables, P (X ).
An AC consists of a rooted, directed, acyclic graph in
which interior nodes are sums and products. Each leaf
is either a non-negative model parameter or an indica-
tor variable that is set to one if a particular variable
can take on a particular value.

For example, consider a simple Markov network over
two binary variables with features f1 = y1 ∧ y2 and
f2 = y2:

P (Y1, Y2) =
1

Z
exp(w1f1 + w2f2).

Figure 1 represents this probability distribution as an
AC, where θ1 = ew1 and θ2 = ew2 are parameters,
and λy1 = 1(y1=1) and λy2 = 1(y2=1) are indicator
variables.

In an AC, to compute the unnormalized probability of
a complete configuration P̃ (X = x), we first set the
indicators variable leaves to one or zero depending on
whether they are consistent or inconsistent with the
values in x. Then we evaluate each interior node from
the bottom up, computing its value as a function of its
children. The value of the root node is the unnormal-
ized probability of the configuration. However, the real
strength of ACs is their ability to efficiently marginal-
ize over an exponential number of variable states. To
compute the probability of a partial configuration, set
all indicator variables for the marginalized variables to
one and proceed as with a complete configuration. The
normalization constant Z can similarly be computed
by setting all indicator variables to one. Conditional
probabilities can be computed as probability ratios.
For example, for the AC in Figure 1, we can compute
the unnormalized probability P̃ (y1) by setting λ¬y1 to
zero and all others to one, and then evaluating the
root. To obtain the normalization constant, we set all
indicator variables to one and again evaluate the root.

Sum-product networks (SPNs) [18] are closely re-
lated to ACs – both represent probability distribu-
tions as a computation graph of sums and products,
and both support linear-time inference. In discrete
domains, SPNs can be efficiently converted to ACs
and vice versa [20]. For representing and manipulating
tractable log-linear models, ACs are a better fit, since
they represent parameters directly as parameter nodes
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Figure 1: Simple arithmetic circuit that encodes a
Markov network with two variables y1 and y2 and two
features f1 = y1 ∧ y2 and f2 = y2

rather than implicitly as edge weights.

3.1 Conditional ACs

This efficient marginalization relies on two properties
of ACs [5, 12]: 1) An AC is decomposable if the chil-
dren of a product node have no common descendant
variable. 2) An AC is smooth if the children of a sum
node have identical descendant variables. We say that
an AC is valid if it satisfies both properties. Valid ACs
can compactly represent probabilistic graphical mod-
els with low tree-width, sum-product networks [18, 20],
and many high tree-width models with local struc-
ture [3].

A valid AC can efficiently marginalize over any vari-
ables, but this comes at a cost: converting a Bayesian
or Markov network to a valid AC could lead to an
exponential blow-up in size. For discriminative tasks,
however, we only need a conditional probability distri-
bution, P (Y|X ). In this case, we will never need to
marginalize over any variables in X , since we assume
they are given as evidence. By relaxing the validity
constraints over those variables, we can obtain a more
compact AC.

Definition 1 An AC over query variables Y and evi-
dence variables X is conditionally valid if it is smooth
and decomposable over Y.

Note that replacing indicator variables for X with con-
stants does not affect smoothness or decomposability
over Y. Therefore, after conditioning on any evidence
x (that is, assigning values to indicator variables as
described earlier), we are left with a valid AC over Y.
A conditionally valid AC therefore defines a tractable
conditional probability distribution: for each configu-
ration of evidence variables, it defines a tractable dis-
tribution over query variables.

Relaxing the definition of validity effectively allows
features to be conditioned on arbitrary evidence with-

Figure 2: Conditional arithmetic circuit that encodes
a conditional random field over two binary query vari-
ables y1 and y2, two binary evidence variables x1
and x2, and five features f1 = y1 ∧ y2, f2 = y2,
f3 = y1 ∧ y2 ∧ x1, f4 = f3 = y1 ∧ y2 ∧ ¬x1, and
f5 = ¬y2 ∧ x1 ∧ x2.

out substantially increasing the complexity of infer-
ence. This ability to add complex dependencies on the
evidence is also a stated benefit of CRFs. ACs offer
the additional benefits of rich structure and tractable
inference over the query variables. See Figure 2 for
an example of how a conditionally valid AC can re-
main compact while including numerous dependencies
on the evidence.

4 DACLearn

Learning CRFs includes structure learning, finding the
set of feature functions f , and parameter learning,
finding the optimal values for θ = ew through joint
optimization.

DACLearn builds on methods for learning tractable
Markov networks, the ACMN algorithm in partic-
ular [13]. As with learning a Markov network,
DACLearn performs a greedy search through the com-
binatorial space of conjunctive features, using the size
of the corresponding AC as a learning bias. However,
rather than optimizing log-likelihood, DACLearn opti-
mizes the conditional log-likelihood (CLL) of the train-
ing dataset D:

CLL(D) =
∑

(y,x)∈D
logP (y|x)

=
∑

(y,x)∈D

∑

j

wjfj(dj)− logZ(x) (3)

where dj denotes the values of y and x for the vari-
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ables that are in the scope of fj . As mentioned earlier,
the partition function Z depends on evidence, so in or-
der to compute the CLL objective function, we need to
run inference in the model for every example. There-
fore, the complexity of evaluating the CLL objective
function is |D| times larger than the complexity of in-
ference in the model, which increases the importance
of efficient inference.

Moreover, similar to ACMN, DACLearn updates the
circuit that represents the CRF model as it adds fea-
tures to the model. However, DACLearn maintains a
conditionally valid AC to represent a conditional dis-
tribution.

These two changes allow us to learn arbitrary CRFs,
where the conditional distribution over the query vari-
ables is always tractable. As with ACMN, these mod-
els may have high treewidth over the query variables
yet remain tractable due to context-specific indepen-
dence among the features.

In the following sections, we describe our procedures
for structure search, parameter learning, and updating
circuits in more detail.

4.1 Structure search

The goal of structure search is to find features that
increase the value of the CLL objective function, Re-
lation 3, without vastly increasing the complexity of
inference in the model. Therefore, following Lowd and
Domingos [12] we optimize a modified objective that
penalizes circuits with more edges:

Score(C,D) = logP (D;C)γne(M)λnp(M)

where logP (D;C) is the CLL of the training data,
ne is the number of edges in the circuit, and np is
the number of parameters, to help avoid overfitting.
γ and λ are hyperparameters that adjust how much
additional edges and parameters are penalized.

The value of adding a feature can thus be determined
by its effect on this score function. However, rather
than adding features individually, we have found it to
be more effective to add groups of related features at
once. We define a candidate feature group F(f, v) to
be the result of extending an existing feature f with
all states of variable V :

F(f, v) =
k⋃

i=1

f ∧ vi, (4)

where vi denotes the ith state of some variable V with
cardinality k. We score the candidate feature group
as a whole instead of scoring each candidate feature
separately:

Score(F) = ∆cll(F)− γ∆e(F)− λ|F|, (5)

where ∆cll and ∆e denote the change in CLL and the
number of edges, respectively, resulting from adding
this set of features to the current circuit.

In order to compute the score of candidate feature
group F , we need to compute the increment in the like-
lihood, which requires optimizing the weight of each
candidate feature in the group. For efficiency, while
scoring a feature group we assume that the weights
of the other features are fixed, an approach also used
by McCallum [15]. This leads to an approximation of
the CLL gain that can be optimized without rerun-
ning inference in the model. Specifically, if we add a
candidate feature group F(f, v) into the model while
keeping the other parameters fixed, we can update the
partition function using the following relation:

∆ logZ(X ) =

log(
∑

i

exp(θi)P (fi|X ) + P (¬f |X )), (6)

where fi = f ∧ vi, and θi is the weight of fi. P is
the probability distribution represented by the current
model. Using an AC, we can compute P (fi|X ) for all
fi ∈ F by running inference in the circuit: once to
compute the partition function Z(X ) and once again

to compute all unnormalized P̃ (fi). These unnormal-
ized probabilities can be computed in parallel by dif-
ferentiating the circuit (see Darwiche [5] for details).
For each feature f , we can re-use the expectation and
partition function for candidate feature groups F (f, v)
for every variable v.

To find θi, we maximize the increment in the CLL
function:

∆cll(F) =
∑

(y,x)∈D
(
∑

i

(θiP̃ (fi|x))−∆ logZ(x)), (7)

where P̃ is the empirical probability distribution. The
gradient of Relation 7 with respect to θi becomes:

∂∆cll(F)

∂θi
=

∑

(y,x)∈D

exp(θi)P (fi|x)

exp(∆ logZ(x))
(8)

As a result, optimizing Relation 7 does not require
inference in the candidate model.

Nevertheless, fixing the existing parameters is very re-
strictive since adding new features may affect the opti-
mal weights of the current features; thus we have to re-
learn the parameters after adding each feature through
joint parameter optimization. In our experiments, we
found that it sufficed to perform this optimization in-
crementally, running just one step of gradient descent
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Algorithm 1 DACLearn

C ← AC representing initial structure. //Section 4.1.1
fs ← ∅ //candidate feature group max heap.
of ← ∅ //omitted candidates max heap.
fh ← feature max heap based on feature support.
//t is feature batch size.
do

while fs 6= ∅ do
F ← fs.pop()
s ← ∆cll(F)− λ|F|
if s > γ∆e(F) then

Update C
Joint parameter optimization

else
of.push(F)

end if
if size of C > max size then Stop.

end while
for i=1 to t do

f ← fh.pop()
if Support of f < min support then

γ ← γ
2

//Shrink edge cost.
if γ < γmin then

Stop
else

fs ← of; of ← ∅
end if
break

else fs ← GenCandidates(f)
end if

end for
while not Stop
return C

after adding each feature. This works because the opti-
mal weights for most features do not change very much
after adding one feature group, so even one step of gra-
dient descent is sufficient to keep weights close to their
optimal values throughout structure learning. After
structure learning is complete, we fine-tune all model
parameters by running joint parameter optimization
to convergence.

When we add a candidate feature group to the model,
the scores of all the other candidate feature groups
become obsolete, so we have to re-score them. If we
have m candidate feature groups, we may re-score a
candidate feature group O(m) times. Therefore, if we
initially generate all possible candidate feature groups
we would end up with an exponential number of can-
didate feature groups that makes re-scoring become
the bottleneck of the learning process. To address this
problem, we use a greedy approach, Algorithm 2, to
have a small set of candidate feature groups (candidate
set) at every point of the structure search.

This heuristic is based on the idea that interesting fea-
tures may have more support in the data, a heuristic
also used by [9] to learn Markov networks. Although
this heuristic will sometimes overlook higher-scoring
feature groups, our experiments verify that, using this

Figure 3: Updating circuits. Left: initial circuit, mid-
dle: circuit after a consistent split, and right: circuit
after an inconsistent split.

heuristic, the algorithm can better explore the feature
space, resulting in more accurate models.

As shown in Algorithm 1, DACLearn maintains a set
of candidate feature, groups ordered by ∆cll. Each
candidate feature group that increases the model score
is added to the model. When the current set of fea-
ture groups has been exhausted, it selects the t current
features with the most support in the data and uses
them to generate new candidate feature groups. Algo-
rithm 2 shows the process of generating candidate fea-
tures groups, which consists of extending an existing
feature with all possible variables and computing the
conditional likelihood gain of each new group. There-
fore, we need to optimize Relation 7 O(t|V |) times for
each round of candidate feature generation.

This process of adding feature groups, ordered by CLL,
and generating new features groups, ordered by feature
support, continues until no feature remains with more
than minimal support or the model’s size reaches a
predefined maximum size limit.

During structure search, we may omit some candidate
feature groups because of their edge costs. However,
we may run out of good candidate feature groups while
the size of the circuit is much smaller than the max-
imum circuit size. Therefore, to benefit from these
candidate feature groups, we keep all the omitted can-
didate feature groups in a priority heap. These can-
didates are pruned only because of the complexity
penalty term, so when there are no more features to
expand, we halve the edge penalty γ and re-score these
candidate feature groups.

4.1.1 Initial structure

As discussed before, keeping the candidate set small is
important to reduce the number of re-scores. Unfor-
tunately, even scoring pairwise features would require
at least Ω(|V2|) calls to the score function, where V
is the set of all variables. Therefore, we begin with a
pre-defined initial structure consisting of heuristically
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Algorithm 2 Candidate feature group generator

procedure GenCandidates(f)
//f is the feature used to generate candidate features.
fs ← empty candidate feature group heap
for each v in V do

k ← cardinality of variable v
F ← ⋃k

i=1 f ∧ vi
//λ is the feature penalty.
if ∆cll(F) > λ|F| then

fs.push(F)
end if

end for
return fs

end procedure

chosen pairwise features. This allows us to consider
more complex features given limited training time.

For each query variable Yi, we introduce a set of po-
tentials φ(Yi, Xj) by selecting evidence variables Xj

with high mutual information, I(Yi, Xj) = H(Yi) −
H(Yi|Xj). Since the circuit does not have to be de-
composable and smooth for the evidence variables, we
are free to pick as many evidence variables as we want.
The number of evidence variables chosen is a hyper-
parameter that we tune on validation data. We apply
the same idea to the query variables. However, we
have tractability constraints for query variables, so we
only learn a Chow-Liu tree over the query variables.
Finally, we exactly compile the initial structure to a
conditionally valid AC that represent a CRF, and learn
the weihts using convex optimization methods.

4.2 Parameter learning

We jointly optimize all parameters after compiling the
initial structure, adding each feature, and after the end
of the structure search. The CLL objective function
is convex with respect to feature weights, so we use
the L-BFGS algorithm to optimize it. We compute
the gradient for all feature weights by differentiating
the circuit once, which only requires two passes over
the circuit [5]. The partition function of Relation 3 de-
pends on evidence variables, so we have to differentiate
the circuit once for each example. This requires per-
forming inference in the circuit Ω(|D|) times, which
highlights the expense of joint optimization and im-
portance of having efficient inference.

4.3 Updating circuits

Our circuit update method is based on the Split al-
gorithm from ACMN. Given a feature f in the circuit
with parameter θ and a binary variable V , the goal is
to add two features to the circuit, f ∧ v and f ∧ ¬v,
with parameters θ1 and θ2, respectively. The left cir-
cuit in Figure 3 shows the initial circuit. Gθ indicates

Table 1: Dataset characteristics

Dataset Var# Train Dataset Var# Train
NLTCS 16 16181 DNA 180 1600
MSNBC 17 291326 Kosarek 190 33375
KDDCup 2000 64 180092 MSWeb 294 29441
Plants 69 17412 Book 500 8700
Audio 100 15000 EachMovie 500 4524
Jester 100 9000 WebKB 839 2803
Netflix 100 15000 Reuters-52 889 6532
Accidents 111 12758 20 Newsgroup 910 11293
Retail 135 22041 BBC 1058 1670
Pumsb-star 163 12262 Ad 1556 2461

the sub-circuit between the common ancestor of in-
dicator variables λv and λ¬v and parameter node θ.
Similarly, the sub-circuits between the common ances-
tor and indicator nodes λv and λ¬v

are labeled Gv
and G¬v, respectively. If V is a query variable, we
have to duplicate the sub-circuit Gθ into Gθ1 and Gθ2,
as shown in the middle circuit of Figure 3, and extend
each sub-circuit using the new parameter nodes θ1 and
θ2. Parameter node θ is attached to both sub-circuits,
which ensures the decomposability and smoothness of
the circuit. On the other hand, if V is an evidence
variable, we have a more compact representation by
avoiding the expensive duplication of Gθ. We refer
to this as an inconsistent split. The right circuit of
Figure 3 indicates the result of an inconsistent split,
which is conditionally valid. For an inconsistent split,
the number of new nodes and edges added to the cir-
cuit is significantly less than the size of Gθ that we
need to duplicate for a consistent split.

5 Experiments

5.1 Datasets

We run our experiments using 20 datasets illustrated
in Table 1 with 16 to 1556 binary-valued variables.
These datasets are drawn from a variety of domains,
including recommender systems, text analysis, census
data, and plant species distribution, and have been
extensively used in previous work [6, 8, 20, 19].

To observe the performance of discriminative structure
learning in the presence of variable number of query
variables, we create two versions of these 20 datasets.
In one, we label a randomly chosen 50% of the vari-
ables as evidence variables and the other half as query
variables. We create the other version of the datasets
by randomly selecting 80% of the variables as evidence
variables while the remaining 20% are query variables.

5.2 Methods

For baselines, we compare to a state-of-the-art genera-
tive SPN learner, IDSPN, and a generative AC learner,
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ACMN. Our proposed heuristics for structure search
can also help the generative ACMN algorithm to find
a better structure. Therefore, we incorporate those
heuristics into the ACMN algorithm, which we name
efficient ACMN (EACMN). Based on our experiments
on the 20 datasets, EACMN is significantly more ac-
curate than ACMN on 13 datasets out of 20 datasets
in terms of average log-likelihood of joint probability
distribution, and not significantly different on the re-
maining 7 datasets. Moreover, EACMN, on average,
finds 1.7 times more features, while its circuits are 2.5
times more compact. These comparisons show the im-
portance of our search heuristics. See the supplemen-
tary material for a more detailed comparison between
ACMN and EACMN. By using EACMN as a baseline,
we ensure that any performance gains demonstrated
by DACLearn are attributable to discriminative learn-
ing, and are not simply an artifact of the new structure
search efficiency heuristics.

To compare the effect of discriminative parameter
learning, we also take the best models learned by
EACMN, based on average log-likelihood on vali-
dation data, and relearn their parameters to maxi-
mize CLL. We call this method conditional ACMN
(CAMCN). This idea is similar to discriminative learn-
ing of SPNs [7], which supposes a predefined SPN
structure and then applies a discriminative weight
learning approach to learn the parameters.

As our last baseline, we choose MCTBN [10], which
learns a mixture of conditional tree Bayesian net-
works. To find each tree, MCTBN needs to learn
O(n2) logistic regression models, where n is the num-
ber of query variables, and each logistic regression does
O(|D|) passes over training data. This makes MCTBN
less practical when the number of query variables in-
creases2.

For all of the above methods, we learn the model us-
ing the training data and tune the hyper-parameters
using the validation data, and we report the aver-
age CLL over the test data. To tune the hyper-
parameters, we used a grid search over the parameter
space. We used the original IDSPN models learned by
the authors[20]3.

For EACMN, CACMN, and DACLearn, we use an L1
prior of 0.1, 0.5, 1, and 2, and a Gaussian prior with
a standard deviation of 0.1 and 0.5. For EACMN, we
use feature penalties of 2, 5, and 10, an edge penalty
of 0.1, a maximum circuit size of 2M edges, and a fea-
ture batch size of 2. For DACLearn, we use the same

2Another baseline would be learning tree CRFs [2], how-
ever, its implementation is not usable due to a broken li-
brary dependency.

3http://ix.cs.uoregon.edu/~pedram/ac_models.
tar.gz

settings for feature penalty, edge penalty and feature
batch size, but reduce the maximum circuit size to 1M
edges. We also use 1, 10, 20, 30, and 40 as the number
of initial evidence variables connected to each query
variable. For MCTBN, we run the authors’ code4, but
we tune the cost hyper-parameter on validation data,
instead of using the default cross-validation. In our
experiments, we found that using the validation data
helps MCTBN avoid overfitting the training data. For
the cost parameter we used values of 0.01, 0.05, 0.1,
0.5, 1, and 2. We also train MCTBN with 1, 2, 3, and
4 mixture components.

We bounded the learning time of all methods to 24
hours, and we ran our experiments on an Intel(R)
Xeon(R) CPU X5650@2.67GHz.

Our implementations of DACLearn, EACMN,
CACMN, and IDSPN are all available in the
open-source Libra toolkit [14], available from
http://libra.cs.uoregon.edu/.

5.3 Results

Table 2 shows the average CLL comparison of
DACLearn and the other baselines on 20 datasets with
50% and 80% evidence variables5. We use ∗ to indi-
cate that DACLearn has significantly better test set
CLL than the corresponding method on the given
dataset, and • for the reverse. We also use ◦ to
show that two methods are not significantly different.
The bold numbers only highlight which method out
5 has the better average CLL on the given dataset.
Wins and losses are determined by two-tailed paired
t-tests (p < 0.05). Based on the results, DACLearn is
never significantly worse than MCTBN, CACMN, and
EACMN, on the 20 datasets with 80% evidence vari-
ables, and only is significantly worse than IDSPN on
two datasets. Furthermore, DACLearn has better av-
erage CLL than the other methods on 15 datasets. As
we decrease the number of evidence variables, the ben-
efits of discriminative learning diminish (as expected),
but DACLearn still significantly outperforms the other
methods on many datasets. MCTBN reaches the 24
hour limit without training all the needed O(n2) lo-
gistic regressions on 3 datasets. Table 2 also shows
that discriminative parameter learning is no substi-
tute for discriminative structure learning. The per-
formance of CACMN is much closer to EACMN than
to DACLearn. This is because DACLearn learns con-
ditionally valid ACs, which allows DACLearn to con-
sider many models that EACMN and CACMN can-

4https://github.com/charmgil/M-CTBN
5For more detailed results, including timing informa-

tion, see the online appendix at http://ix.cs.uoregon.
edu/~pedram/daclearn/
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Table 2: Average conditional log-likelihood (CLL) comparison. • shows significantly better CLL than DACLearn,
∗ indicates significantly worse CLL than DACLearn, and ◦ used when CLL is not significantly different. The bold
numbers highlights the method that has the best CLL on each dataset. The last row, summarizes the number
of wins (W), ties (T), and losses (L) of DACLearn comparing to the other baselines based on the significance
results. † indicates the experiment has not finished given the 24 hour limit.

50% Evidence variables 80% Evidence variables
Dataset IDSPN EACMN CACMN DACL MCTBN IDSPN EACMN CACMN DACL MCTBN

NLTCS -2.774◦ -2.781∗ -2.780 ∗ -2.770 -2.792 ∗ -1.262◦ -1.265 ∗ -1.262∗ -1.255 -1.263∗
MSNBC -2.922∗ -2.925 ∗ -2.925 ∗ -2.918 -3.253 ∗ -1.557◦ -1.560 ∗ -1.560∗ -1.557 -1.614∗
KDDCup 2000 -0.996◦ -1.001 ∗ -0.999◦ -0.998 -1.009 ∗ -0.390∗ -0.387◦ -0.386◦ -0.386 -0.390∗
Plants -4.759∗ -4.891 ∗ -4.794 ∗ -4.655 -4.866 ∗ -1.915 ∗ -1.928 ∗ -1.888∗ -1.812 -1.911∗
Audio -19.372∗ 19.647 ∗ -19.512 ∗ -18.958 -18.965◦ -6.645 ∗ -7.777 ∗ -7.647∗ -7.337 -7.343◦
Jester -25.544∗ -25.597 ∗ -25.477 ∗ -24.830 -24.955 ∗ -10.437∗ -10.422∗ -10.351∗ -9.998 -10.004◦
Netflix -27.051∗ -27.348 ∗ -27.282 ∗ -26.245 -26.309 ∗ -10.954∗ -11.065∗ -10.997∗ -10.482 -10.476◦
Accidents -9.566• -9.185• -9.143• -9.718 -10.198 ∗ -3.972∗ -3.722∗ † -3.493 -3.711∗
Retail -4.853∗ -4.845 ∗ -4.844 ∗ -4.825 -4.840 ∗ -1.705∗ -1.694◦ -1.691◦ -1.687 -1.685◦
Pumsb-star -6.414◦ -6.844 ∗ -6.653 ∗ -6.363 -6.002• -2.851∗ -3.281 ∗ † -2.594 -2.661∗
DNA -35.727∗ -34.561• -34.480• -34.737 -37.151 ∗ -12.727∗ -12.159◦ -12.099◦ 12.116 -13.116∗
Kosarek -5.000• -5.098 ∗ -5.046◦ -5.053 -5.144 ∗ -2.535• -2.594 ∗ -2.557◦ -2.549 -2.601∗
MSWeb -5.658◦ -5.682 ∗ -5.681 ∗ -5.653 -5.788 ∗ -1.376∗ -1.363 ∗ -1.355∗ -1.333 -1.366∗
Book -16.530• -17.528 ∗ -17.115 ∗ -16.801 -16.764 ◦ -6.891∗ 7.364 ∗ -7.047∗ -6.817 -6.979∗
EachMovie -25.399◦ -27.354 ∗ -26.568 ∗ -25.325 -26.233 ∗ -9.573◦ -10.608∗ -10.029∗ -9.403 -9.996∗
WebKB -74.473∗ -76.827 ∗ -75.840 ∗ -72.072 -66.302• -29.127∗ -30.189∗ -29.522∗ -28.087 -29.891∗
Reuters-52 -40.209• -43.129 ∗ -42.379 ∗ -41.544 † -16.853• -17.895∗ -17.529∗ -17.143 -17.252◦
20 Newsgroup -74.785• -78.228 ∗ -77.831 ∗ -76.063 † -28.443∗ -29.674∗ -29.442∗ -27.918 -29.176∗
BBC -121.798∗ -124.539∗ -123.504 ∗ -118.684 -93.192• -46.116∗ -47.298∗ -46.381∗ -44.811 44.818◦
Ad -7.349∗ -5.184 ∗ -4.658• -4.893 † -2.341∗ -1.658∗ -1.505∗ -1.370 -1.546∗
W/T/L 10/5/5 18/0/2 15/2/3 N/A 12/2/3 15/3/2 17/3/0 14/4/0 N/A 14/6/0

not compactly represent as valid ACs. On two of the
three datasets where CACMN is significantly better
than DACLearn, EACMN is also significantly better.
DACLearn also compares favorably to IDSPN [20], in
spite of the fact that IDSPN learns models with hidden
variables and DACLearn does not.

As discussed earlier, conditionally valid ACs represent-
ing P (Y|X ) are more compact than valid ACs repre-
senting P (Y,X ). We verify this empirically by mea-
suring the size of circuits learned with each method.
The average sizes of the circuits learned by IDSPN and
EACMN are 2.2M and 1.1M edges, respectively, while
the average size of the circuits learned by DACLearn
is 55K edges when we have 50% evidence variables and
22K edges when we have 80% evidence variables. This
means that inference in conditionally valid ACs is 100
times faster than IDSPN when we have 80% evidence
variables!

CACMN is actually less efficient than DACLearn over-
all, since it performs weight learning on the much
larger ACs learned by EACMN. As a result, it runs
out of time on two datasets. We can avoid this prob-
lem by restricting EACMN to learn smaller models,
although this sacrifices accuracy. It is also informative
that CACMN could finish learning using the same cir-
cuits when we have 50% evidence variables, because
when we have less evidence it is more likely that more
examples share the same evidence setting, and since

the partition function only depends on evidence, we
need to perform inference fewer times.

6 Conclusion

Tractable probabilistic models are a promising alter-
native to Bayesian networks, Markov networks, and
other intractable models. DACLearn builds on pre-
vious successful methods for learning tractable prob-
abilistic models, extending them to learning condi-
tional probability distributions. By optimizing con-
ditional likelihood and learning a conditionally valid
AC, DACLearn obtains more accurate and more com-
pact ACs than previous generative approaches.

DACLearn is limited to learning conjunctive features
over the observed variables. Previous work with SPNs
has shown that mixtures often lead to higher accuracy.
For example, IDSPN uses hierarchical mixtures of
tractable Markov networks to obtain consistently bet-
ter results than tractable Markov networks alone [20].
Learning tractable conditional distributions with la-
tent variables remains an important open problem.
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