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Structured Prediction

* \We are interested to learn a function (I) . X — Y

* Xinput variables
* Wecan define @ as @ := argmax, P(Y = y|x)
* For a Gibbs distribution:

® := argmin, Fyw (y, X)




Structured Prediction Energy Networks (SPENSs)

*If E.,(y,x) isparameterized using a differentiable model such as a
deep neural network:
* We canfind a local minimum of E using gradient descent

0,
Yi+1 — PyEAL (Yt — U@EW(YLL, X))

* The energy networks express the correlation among input and output
variables.

* Traditionally graphicalmodels are used for representing the correlation among output
variables.

* Inference is intractable for most of expressive graphical models



Energy Models

Convolutional Neural Network
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Training SPENSs

e Structural SVM (Belanger and McCallum, 2016)

* End-to-End (Belanger et al., 2017)

* Value-based training (Gygli et al. 2017)

* Inference Network (Lifu Tu and Kevin Gimpel, 2018)
e Rank-Based Training (Rooshenas et al., 2018)



Indirect Supervision

e Data annotation is expensive, especially for structured outputs.

* Domain knowledge as the source of supervision.
* |t can be written as reward functions R(X, y)

* R(x,y) evaluates a pair of input and output configuration into a scalar
value

* For a given x, we are looking for the best y that maximize R(x,y)



Search-Guided Training
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We have a reward function that provides indirect supervision



Search-Guided Training

Fw(.,x
We want to learn a smooth version of the reward function
such that we can use gradient-descent inference at test time
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We have a reward function that provides indirect supervision



Search-Guided Training
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We sample a point from energy function using noisy gradient-descent inference



Search-Guided Training
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We sample a point from energy function using noisy gradient-descent inference



Search-Guided Training
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We sample a point from energy function using noisy gradient-descent inference
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Search-Guided Training
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We sample a point from energy function using noisy gradient-descent inference
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We sample a point from energy function using noisy gradient-descent inference



Search-Guided Training
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Then we project the sample to the domain of the reward function
(the sample is a point in the simplex,
but the domain of the reward function is often discrete, i.e., the vertices of the simplex)



Search-Guided Training
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Then the search procedure uses the sample as input and
returns an output structure by searching the reward function



Search-Guided Training
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We expect that the two points have the same ranking
on the reward function and negative of the energy function



Search-Guided Training

Ranking violation
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We expect that the two points have the same ranking
on the reward function and negative of the energy function



Search-Guided Training
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When we find a pair of points that violates the ranking constraints,
we update the energy function towards reducing the violation



F1 Score

Task-Loss as Reward Function
for Multi-Label Classification

* The simplest form of indirect supervision is to use task-loss as reward
function: R(x,y) = Fi(x,y,y*)
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Domain Knowledge as
Reward Function for gooes < Comtains tha uccre of sach exmple

the first appearance of each tag
j <— Index of the current token

Citation Field EXtraCtiOn i <- Index of the current example

# Parantheses have the same tag of what comes inside

x = Citation Token Sequence if j > 0 and last token == '(' or current token == ')':
if tags[j] != tags[j-1]:
Warren , D . H . D . score[1] —= 1
( 1976 ) . . .
. . # Period takes that tag of its predecessor
Generating Conditional Plans and Programs . if § > 0 and current token == '.':
In Proceedings of the Summer Conference if j > 0 and tags[j] != tags[]-1]:
on AI and Simulation of Behavior score[1] —= 1
» Edinburgh . # Only one of the booktitle, journal,
# or techinical report can appear
if first seen[booktitle tag] >= 0 :
y = Seq. of Labels < |14] if first seen[journal tag] >= 0
or first seen[technical report tag] >= 0:
author author author author author author author author score[1] —= 1
date date date date . ) .
title title title title title title if first seen[journal tag] >= 0:
booktitle booktitle booktitle booktitle booktitle booktitle if first seen[booktitle tag] >= 0
booktitle booktitle booktitle booktitle booktitle booktitle or f}rst_seen[technlcal_report_tag] >= 0:
booktitle location location score[i] —= 1

if first seen[techincal report tag] >= 0:
if first seen[booktitle tag] >= 0
or first seen[journal tag] >= O0:
score[i] =1
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Energy Model

Tokens

Deep
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Performance on Citation Field Extraction

Method

Accuracy Inference
time (sec.)
GE 37.3% -
Iterative Beam Search
K=1 30.5% 159
K=2 35.7% 850
K=5 39.3% 2,892
K=10 39.0% 6,654
PG
EMA baseline 54.5% <1
Parametric baseline 47.9% <1
MMRN 39.5% <1
DVN 29.6% <1
R-SPEN 48.3% <1
SG-SPEN 57.1% <1




Semi-Supervised Setting

* Alternatively use the output of search and ground-truth label for
training.

No. GE PG DVN R-SPEN SG-SPEN | SG-SPEN-sup DVN-sup
5 547 55.6 50.5 55.0 65.5 53.0 57.4
10 579 67.7 60.6 65.5 71.7 62.4 61.9
50 68.0 765 67.7 81.5 82.9 81.6 81.4
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Shape Parser




Shape Parser

c(32,32,28) c(32,32,24)




Shape Parser

c(32,32,28) c(32,32,24)

Graphic Engine
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Shape Parser
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Shape Parser Energy Model
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Search Budget vs. Constraints
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Performance on Shape Parser

Method 10U Inference
time (sec.)

Iterative Beam Search
K=5 24.6% 3,882
K=10 30.0% 15,537
K=20 43.1% 38,977
Neural shape parser 32.4% <1

SG-SPEN 56.3% <1




Conclusion and Future Directions

* If a reward function exists to evaluate every structured output into a
scalar value
* We can use unlabled data for training structured prediction energy networks

 Domain knowledge or non-differentiable pipelines can be used to
define the reward functions.

* The main ingredient for learning from the reward function is the
search operator.

* Here we only use simple search operators, but more complex search
functions derived from domain knowledge can be used for
complicated problems.



