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Structured	Prediction

• We	are	interested	to	learn	a	function	
• X	input	variables
• Y	output	variables

• We	can	define										as	
• For	a	Gibbs	distribution:



Structured	Prediction	Energy	Networks	(SPENs)

• If																					is	parameterized	using	a	differentiable	model	such	as	a	
deep	neural	network:
• We	can	find	a	local	minimum	of	E	using		gradient	descent

• The	energy	networks	express	the	correlation	among	input	and	output	
variables.
• Traditionally	graphical	models	are	used	for	representing	the	correlation	among	output	
variables.
• Inference	 is	intractable	 for	most	of	expressive	 graphical	models	 	



Energy	Models	

[picture	 from	 Belanger	 (2016)]

[picture	 from	 Altinel (2018)]



Training	SPENs

• Structural	SVM	(Belanger	and	McCallum,	2016)
• End-to-End	(Belanger	et	al.,	2017)
• Value-based	training	(Gygli et	al.	2017)
• Inference	Network	(Lifu Tu and	Kevin	Gimpel,	2018)
• Rank-Based	Training	(Rooshenas	et	al.,	2018)



Indirect	Supervision
• Data	annotation	is	expensive,	especially	for	structured	outputs.
• Domain	knowledge as	the	source	of	supervision.

• It	can	be	written	as	reward	functions			
• evaluates	a	pair	of	input	and	output	configuration	into	a	scalar	
value
• For	a	given	x,	we	are	looking	for	the	best	y	that	maximize	

6



Search-Guided	Training

We	have	a	reward	 function	 that	provides	 indirect	 supervision



Search-Guided	Training

We	have	a	reward	 function	 that	provides	 indirect	 supervision

We	want	to	learn	a	smooth	 version	of	 the	 reward	function
such	 that	we	can	use	gradient-descent	 inference	 at	test	time



Search-Guided	Training

y0

We	sample	 a	point	 from	 energy	 function	 using	 noisy	gradient-descent	 inference



Search-Guided	Training
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We	sample	 a	point	 from	 energy	 function	 using	 noisy	gradient-descent	 inference
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We	sample	 a	point	 from	 energy	 function	 using	 noisy	gradient-descent	 inference
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We	sample	 a	point	 from	 energy	 function	 using	 noisy	gradient-descent	 inference



Search-Guided	Training
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Then	we	project	 the	sample	 to	the	domain	 of	the	 reward	function	
(the	sample	 is	a	point	 in	the	simplex,	
but	 the	domain	 of	the	 reward	function	 is	often	 discrete,	 i.e.,	the	vertices	of	 the	simplex)



Search-Guided	Training
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Then	 the	search	procedure	 uses	the	sample	as	input	 and	
returns	 an	output	 structure	 by	searching	 the	reward	function



Search-Guided	Training
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We	expect	that	the	 two	points	 have	the	same	ranking	
on	 the	reward	 function	 and	negative	 of	the	energy	 function



Search-Guided	Training
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Ranking	violation

We	expect	that	the	 two	points	 have	the	same	ranking	
on	 the	reward	 function	 and	negative	 of	the	energy	 function



Search-Guided	Training
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When	we	find	 a	pair	of	points	 that	violates	 the	ranking	 constraints,	
we	update	 the	energy	 function	 towards	 reducing	 the	violation



Task-Loss	as	Reward	Function		
for	Multi-Label	Classification
• The	simplest	form	of	indirect	supervision	is	to	use	task-loss	as	reward	
function:	



Domain	Knowledge	as		
Reward	Function	for
Citation	Field	Extraction
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Domain	Knowledge	as		
Reward	Function	for
Citation	Field	Extraction
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Domain	Knowledge	as		
Reward	Function	for
Citation	Field	Extraction
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Domain	Knowledge	as		
Reward	Function	for
Citation	Field	Extraction
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Energy	Model
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Performance	on	Citation	Field	Extraction



Semi-Supervised	Setting
• Alternatively	use	the	output	of	search	and	ground-truth	label	for	
training.
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Shape	Parser	Energy	Model
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Search	Budget	vs.	Constraints



Performance	on	Shape	Parser



Conclusion	and	Future	Directions

• If	a	reward	function	exists	to	evaluate	every	structured	output	into	a	
scalar	value
• We	can	use	unlabled data	for	training	structured	prediction	energy	networks

• Domain	knowledge	or	non-differentiable	pipelines	can	be	used	to	
define	the	reward	functions.		
• The	main	ingredient	for	learning	from	the	reward	function	is	the	
search	operator.	
• Here	we	only	use	simple	search	operators,	but	more	complex	search	
functions	derived	from	domain	knowledge	can	be	used	for	
complicated	problems.


